Action Recognition by Joint Spatial-Temporal Motion Feature
نویسندگان
چکیده
This paper introduces a method for human action recognition based on optical flow motion features extraction. Automatic spatial and temporal alignments are combined together in order to encourage the temporal consistence on each action by an enhanced dynamic time warping (DTW) algorithm. At the same time, a fast method based on coarse-to-fine DTW constraint to improve computational performance without reducing accuracy is induced. The main contributions of this study include (1) a joint spatialtemporal multiresolution optical flow computation method which can keep encoding more informative motion information than recent proposed methods, (2) an enhanced DTW method to improve temporal consistence of motion in action recognition, and (3) coarse-to-fine DTW constraint on motion features pyramids to speed up recognition performance. Using this method, high recognition accuracy is achieved on different action databases like Weizmann database and KTH database.
منابع مشابه
Exploring Motion Boundary based Sampling and Spatial-Temporal Context Descriptors for Action Recognition
The most important problem in action recognition is how to represent an action video. The approaches can be roughly divided into four categories: (1) human pose based approaches which utilize human structure information; (2) global action template based approaches which capture appearance and motion information on the whole motion body; (3) local feature based approaches which mainly extract va...
متن کاملRecognition and Segmentation of 3-D Human Action Using HMM and Multi-class AdaBoost
Our goal is to automatically segment and recognize basic human actions, such as stand, walk and wave hands, from a sequence of joint positions or pose angles. Such recognition is difficult due to high dimensionality of the data and large spatial and temporal variations in the same action. We decompose the high dimensional 3-D joint space into a set of feature spaces where each feature correspon...
متن کاملSimulation of Human Motion for Learning and Recognition
Acquisition of good quality training samples is becoming a major issue in machine learning based human motion analysis. This paper presents a method to simulate human body motion with the intention to establish a human motion corpus for learning and recognition. The simulation is achieved by a unique temporal-spatial-temporal decomposition of human body motion into actions, joint actions and ac...
متن کاملIndependent Viewpoint Silhouette-Based Human Action Modeling and Recognition
This paper addresses the problem of silhouette-based human action modelling and recognition independently of the camera point of view. Action recognition is carried out by comparing a 2D motion template, built from observations, with learned models of the same type captured from a wide range of viewpoints. All these 2D motion templates, are projected into a new subspace by means of the Kohonen ...
متن کاملStudy of Human Action Recognition Based on Improved Spatio-temporal Features
Most of the existed action recognition methods mainly utilize spatio-temporal descriptors of single interest point ignoring their potential integral information, such as spatial distribution information. By combining local spatio-temporal feature and global positional distribution information (PDI) of interest points,a novel motion descriptor is proposed in this paper. The proposed method detec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Applied Mathematics
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013